Refinable Kernels
نویسندگان
چکیده
Motivated by mathematical learning from training data, we introduce the notion of refinable kernels. Various characterizations of refinable kernels are presented. The concept of refinable kernels leads to the introduction of wavelet-like reproducing kernels. We also investigate a refinable kernel that forms a Riesz basis. In particular, we characterize refinable translation invariant kernels, and refinable kernels defined by refinable functions. This study leads to multiresolution analysis of reproducing kernel Hilbert spaces.
منابع مشابه
Causality properties of refinable functions and sequences
Abstract. We show that the scale-space operators defined by a class of refinable kernels satisfy a version of the causality property, and a sequence of such operators converges to the corresponding operator with the Gaussian kernel, if the sequence of refinable kernels converges to the Gaussian function. In addition, we consider discrete analogs of these operators and show that a class of refin...
متن کاملSpectral Factorization of 2-block Toeplitz Matrices and Refinement Equations
Pairs of 2-block Toeplitz (N×N)-matrices (Ts)ij = p2i−j+s−1, s = 0, 1, i, j ∈ {1, . . . , N}, are considered for arbitrary sequences of complex coefficients p0, . . . , pN . A complete spectral resolution of the matrices T0, T1 in the system of their common invariant subspaces is obtained. A criterion of nondegeneracy and of irreducibility of these matrices is derived, and their kernels, root s...
متن کاملMultiscale kernels
This paper reconstructs multivariate functions from scattered data by a new multiscale technique. The reconstruction uses standard methods of interpolation by positive definite reproducing kernels in Hilbert spaces. But it adopts techniques from wavelet theory and shift–invariant spaces to construct a new class of kernels as multiscale superpositions of shifts and scales of a single compactly s...
متن کاملStructure of Refinable Splines
A refinable spline is a compactly supported refinable function that is piecewise polynomial. Refinable splines, such as the well known B-splines, play a key role in computer aided geometric designs. Refinable splines have been studied in several papers, most noticably in [7] for integer dilations and [3] for real dilations. There are general characterizations in these papers, but these characte...
متن کاملOn Refinable Sets
A refinable set is a compact set with positive Lebesgue measure whose characteristic function satisfies a refinement equation. Refinable sets are a generalization of self-affine tiles. But unlike the latter, the refinement equations defining refinable sets may have negative coefficients, and a refinable set may not tile. In this paper, we establish some fundamental properties of these sets.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Machine Learning Research
دوره 8 شماره
صفحات -
تاریخ انتشار 2007